Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 646: 123502, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37827392

RESUMO

The increasing prevalence of non-healing infected wounds has become a serious concern in the clinical practice, being associated to population aging and to the rising prevalence of several chronic conditions such as diabetes. Herein, the evaluation of the bactericidal and antibiofilm effects of the natural antiseptic terpenes thymol and farnesol standing alone or in combination with the standard care antiseptic chlorhexidine was carried out both in vitro and in vivo. The in vitro combinatorial treatment of chlorhexidine associated with those terpenes against Staphylococcus aureus in its planktonic and sessile forms demonstrated a superior antibacterial activity than that of chlorhexidine alone. Real-time in vivo monitoring of infection progression and antimicrobial treatment outcomes were evaluated using the bioluminescent S. aureus strain Xen36. In vivo studies on infected wound splinting murine models corroborated the superior bactericidal effects of the combinatorial treatments here proposed. Moreover, the encapsulation of thymol in electrospun Eudragit® S100 (i.e., a synthetic anionic copolymer of methacrylic acid and ethyl acrylate)-based wound dressings was also carried out in order to design efficient antimicrobial wound dressings.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Infecção dos Ferimentos , Humanos , Animais , Camundongos , Clorexidina/farmacologia , Staphylococcus aureus , Timol/farmacologia , Anti-Infecciosos Locais/farmacologia , Antibacterianos , Anti-Infecciosos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico
2.
Materials (Basel) ; 8(8): 5154-5193, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28793497

RESUMO

A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients' quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA